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Аннотация. Исследование, представленное в статье, направлено на разработку и анализ гибридного 

протокола цифровых подписей QDS-Hybrid, сочетающего квантовую верификацию и постквантовый 

алгоритм Dilithium. К задачам, решаемым в работе, относятся обеспечение стойкости к квантовым ата-

кам и классическим угрозам, оптимизация скорости генерации и проверки подписей при сохранении без-

условной безопасности на основе квантовой механики, определение путей решения проблем квантовой 

памяти, декогеренции и масштабируемости существующих QDS-протоколов. В исследовании использу-

ется гибридный подход, основанный на квантово-классическом синтезе. В статье также дано доказатель-

ство стойкости в модели qCMA (Quantum Chosen Message Attack) и универсальной композиционной без-

опасности (UC). Протокол обеспечивает защиту от подмены состояний и атак типа «Man-in-the-Middle» 

(MITM) за счет QZKP (Quantum Zero-Knowledge Proof). При этом доказано, что взлом требует одновре-

менного нарушения Dilithium и QKD. Предложены решения для устранения зависимости от квантовой 

памяти через динамическую генерацию состояний и одноразовые ключи. Показаны пути децентрализа-

ции через блокчейн и квантовые византийские соглашения. Ключевой инновацией, полученной в иссле-

довании, является гибридная архитектура, которая интегрирует Dilithium с квантовой верификацией че-

рез фазовое кодирование. Проведена QZKP-верификация, которая позволяет подтверждать подлинность 

подписи без раскрытия секретного ключа, используя свойства квантовой запутанности и теорему о за-

прете клонирования. QDS-Hybrid демонстрирует практический компромисс между безопасностью и эф-

фективностью, устраняя ключевые недостатки чисто квантовых протоколов. 
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tions for eliminating dependence on quantum memory through dynamic state generation and one-time keys. The paper 

demonstrates paths to decentralization through blockchain and quantum Byzantine agreements. The key innova-

tion obtained in the study is a hybrid architecture that integrates Dilithium with quantum verification via phase 
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Введение 

Квантовые компьютеры являются не только 

прорывом, но и угрозой. Они могут взломать 

шифрование банков, Интернета и даже сек-

ретную переписку государств. И это не дале-

кое будущее, это уже происходит. Основная 

идея протокола заключается в комбинации 

постквантового алгоритма Dilithium с кван-

товой верификацией, что позволяет достичь 

высокой стойкости к атакам при сохранении 

приемлемой скорости работы и совместимо-

сти с существующей инфраструктурой. 

В статье рассматриваются различные методы 

реализации гибридных квантово-цифровых 

подписей (QDS): сочетание квантового рас-

пределения ключей (QKD) протокола BB84 

с постквантовыми алгоритмами, использова-

ние квантово-классических схем с одноразо-

выми подписями, основанными на деревьях 

Меркла, а также протоколы, в которых кван-

товая верификация сочетается с классической 

генерацией ключей. Кроме того, обсуждают-

ся вопросы, связанные с проблемами хране-

ния квантовых состояний, возникновением 

ошибок в квантовых каналах и необходимо-

стью децентрализации верификации. Предло-

жены некоторые методы их решения, такие 

как использование квантовой коррекции оши-

бок (QEC), динамическая генерация состоя-

ний и интеграция с блокчейн-технологиями. 

Квантово-классические схемы позволяют 

постепенно внедрять квантовые технологии 

в существующие криптографические системы. 

Квантовые компьютеры уже меняют правила 

игры, устойчивость к атакам квантовых ком-

пьютеров становится критически важной. 

Исследования являются попыткой создать 

протокол, в котором достигался практиче-

ский компромисс между безопасностью 

и эффективностью. 

Данная статья структурирована следующим 

образом: в первой части сделан анализ суще-

ствующих QDS-протоколов и их ограничений; 

во второй описана концепция QDS-Hybrid, 

включая математический аппарат и алгорит-

мы работы; в третьей описаны безопасность 

и устойчивость; в четвертой показана прак-

тическая реализация предложенного подхода, 

а в пятой показано сравнение протокола 

QDS-Hybrid с чисто квантовыми QDS.  

 

1. Анализ существующих QDS-протоколов 

и их ограничений 

Безопасность QDS гарантируется законами 

квантовой физики, а не вычислительной 

сложностью математических задач (как в RSA 

https://elibrary.ru/
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или ECDSA). Основные принципы безопас-

ности разработаны с использованием теоремы 

о запрете клонирования (No-Cloning Theorem) 

и квантовой запутанности (Entanglement), 

которая позволяет обнаруживать вмешатель-

ство злоумышленника. Подделка подписи 

потребует полного доступа к квантовым со-

стояниям отправителя и нарушения законов 

квантовой механики. Даже квантовый ком-

пьютер не может взломать QDS, так как без-

опасность не зависит от вычислительной 

мощности. 

Рассмотрим ключевые протоколы, их ме-

ханизмы работы и характеристики.  

Протокол Готтсмана — Чуанга [1] теорети-

чески безупречен, но на практике сталкива-

ешься с тем, что даже в лабораторных усло-

виях квантовая память «теряла» состояния 

уже через несколько секунд. Квантовая па-

мять сегодня подобна SSD-диску 80-х гг. 

ХХ в.: теоретически возможна, но на практи-

ке неприменима. Это делает протокол мало-

пригодным для реальных систем, где подпи-

си должны храниться годами (ограничения 

квантовой памяти подробно представлены 

в четвертой части). 

Квантовые открытые ключи вместо клас-

сических используют квантовые состояния, 

сгенерированные через квантовые односто-

ронние функции [1]. Каждый открытый ключ 

(набор квантовых состояний) может быть 

использован только один раз, что повышает 

безопасность, но усложняет практическое 

применение [2]. Протокол имеет высокую 

стоимость инфраструктуры. Для хранения 

состояний необходимо создание доверенного 

центра и наличие квантовой памяти. Однора-

зовость ключей также требует постоянной 

генерации новых состояний, что ресурсоемко. 

Тем не менее протокол стал важным шагом 

в квантовой криптографии, продемонстриро-

вав возможность переноса идей классиче-

ской PKI (Public Key Infrastructure) в кванто-

вый контекст, несмотря на технические 

сложности. 

Квантовый протокол цифровой подписи на 

основе Quantum One-Time Pad (QOTP) — это 

метод, объединяющий квантовое шифрова-

ние и классические принципы криптографии 

[3 ; 4]. Протокол требует создания кванто-

вого одноразового блокнота. Без ключа 

шифротекст выглядит полностью случай-

ным, обеспечивая информационную без-

опасность. Протокол часто включает дове-

ренный центр (арбитр), который участвует 

в генерации ключей и проверке подписей. 

Информационная безопасность гарантирует-

ся свойствами QOTP, которые без ключа де-

лают подделку невозможной даже для кван-

тового противника. Каждый ключ использу-

ется единожды, что исключает повторные 

атаки. К недостаткам протокола можно отне-

сти необходимость установления доверен-

ного центра, что создает уязвимости, а также 

генерацию и хранение квантовых ключей, 

которые остаются ресурсоемкими. Тем не 

менее QDS на основе QOTP предлагает тео-

ретически надежное решение, но его внедре-

ние ограничено техническими и инфраструк-

турными проблемами. 

Протокол Quantum Hash-Based QDS пред-

ставляет собой метод цифровой подписи, 

объединяющий квантовое хеширование  

и постквантовые криптографические прин-

ципы. Квантовое хеширование использует 

квантовые состояния для создания уникаль-

ных «отпечатков» сообщений.  

Пример квантовой дактилоскопии, где дан-

ные кодируются в суперпозиции кубитов, 

обеспечивая компактность и устойчивость  

к коллизиям, рассмотрен в работе [3]. 

Постквантовая стойкость основана на крип-

тографически стойких хеш-функциях (напри-

мер, на модификации «Стрибог» [5]), устой-

чивых к атакам квантовых компьютеров [6]. 

К недостаткам протокола можно отнести вы-

сокие вычислительные затраты и проблемы 

управления состоянием, а потеря состояния 

или восстановление из резервной копии мо-

жет привести к повторному использованию 

одноразовых ключей и компрометации си-

стемы. 

Одноразовые ключи часто комбинируются 

с методами вроде подписи Лампорта или  

деревьев Меркла для многоразового исполь-

зования открытых ключей [7]. Протокол 

устойчив, он защищен от атак Шора и Гро-

вера благодаря комбинации классических 

хеш-функций и квантовых методов, но обла-

дает рядом недостатков: требуется генерация 

и хранение большого количества одноразо-

вых ключей. Квантовое хеширование пока 

ограничено лабораторными условиями из-за 

сложности реализации. 

Рассмотрим примеры реализации, включа-

ющие гибридные схемы, где квантовые ме-

тоды усиливают классические алгоритмы 

(ГОСТ 34.11-12). 

Гибридные протоколы (QKD + посткван-

товые подписи) объединяют квантовое рас-

пределение ключей (QKD) и посткванто-

вые алгоритмы цифровой подписи для двой-

ной защиты от классических и квантовых 

угроз.  
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Так, QKD обеспечивает безопасный обмен 

ключами на основе законов квантовой физи-

ки (протокол BB84 [8]), но он уязвим к ак-

тивным атакам MITM. 

Постквантовые подписи используют алго-

ритмы, устойчивые к квантовым атакам 

CRYSTAL-Dilithium и ML-DSA из стандар-

тов FIPS 204/205. Они решают проблему 

аутентификации в QKD, заменяя классиче-

ские схемы (RSA, ECC). Основными прин-

ципами работы являются аутентификация 

сторон и гибридное шифрование. Посткван-

товые подписи подтверждают легитимность 

участников перед запуском QKD, предот-

вращая подмену узлов. После QKD сеансо-

вый ключ защищается постквантовыми KEM 

(Crystals-Kyber) или симметричными алго-

ритмами AES-256. К преимуществам можно 

отнести устойчивость и совместимость, 

а также защиту от атак Шора на QKD и Гро-

вера на симметричное шифрование. Недо-

статками являются большие размеры ключей 

и отсутствие инфраструктуры. Постквантовые 

подписи требуют больше ресурсов: в частно-

сти, для Dilithium-5 нужно примерно 2,5 Кб 

для открытого ключа. Внедрение требует 

модернизации сетевых протоколов, например, 

замену традиционного механизма аутентифи-

кации на основе цифровых подписей в про-

токоле TLS на схему аутентификации 

KEMTLS. Так, PQXDH (Signal) и ML-KEM 

(Chrome) используют гибридные схемы для 

обмена ключами, но полная интеграция QKD 

и постквантовых подписей остается обла-

стью активных исследований. 

Однако существующие QDS-протоколы 

сталкиваются с проблемами масштабируемо-

сти, скорости работы и требований к кванто-

вой инфраструктуре. В 2023 г. группа из MIT 

попыталась реализовать QDS на 120 км, но 

из-за ошибок в канале 30 % подписей оказа-

лись неверифицируемыми. Эксперимент по-

казал, что без коррекции ошибок даже самые 

совершенные протоколы бесполезны. 

 

2. Протокол QDS-Hybrid 

Протокол QDS-Hybrid объединяет кван-

товую верификацию (на основе модифици-

рованного алгоритма Шора — Китаева [9]) 

для защиты от подделки и классическую 

постквантовую подпись (Dilithium) для эф-

фективной генерации и проверки.  

Основной инновацией в протоколе являет-

ся использование квантового доказательства 

с нулевым разглашением (QZKP) для под-

тверждения подлинности подписи без рас-

крытия секретных ключей. 

2.1. Общая архитектура 

Алгоритм работает по стандартной схеме. 

Вначале (первый этап) производится кванто-

вая инициализация. Отправитель создает 

классический ключ Dilithium (pk, sk) и кван-

товый верификационный ключ |ψsk⟩ (получе-

ние ключа |ψsk⟩ описано в 2.2). Отправитель 

публикует pk и передает |ψsk⟩ доверенному 

арбитру через квантовый канал. 

После этого (второй этап) отправитель 

подписывает сообщение M классическим 

способом σ = Dilithium.Sign (sk, M), т. е. при-

нимает на вход секретный ключ sk и сооб-

щение M и выполняет алгоритм подписи,  

основанный на решетках (lattice-based 

cryptography), используя параметры ключа  

и сообщение для генерации подписи. Затем 

он возвращает цифровую подпись σ, которая 

является доказательством подлинности и це-

лостности сообщения M и связана с секрет-

ным ключом sk. Последним действием на 

этом шаге является генерирование квантово-

го доказательства |ϕσ⟩ на основе |ψsk⟩ и M. 

Генерация квантового доказательства ϕσ опи-

сана ниже. 

Третьим этапом является верификация. 

Получатель имеет (M, σ, |ϕσ⟩) и проводит 

классическую проверку σ с помощью pk, 

т. е. делает стандартную проверку Dilithium. 

После получения удовлетворительного ре-

зультата проводится квантовая проверка. 

Арбитр использует |ψsk⟩ для верификации 

|ϕσ⟩ через алгоритм Шора — Китаева, если 

состояние |ϕσ⟩ корректно, подпись принима-

ется (вопрос децентрализации верификации 

рассмотрен в 4.2). 

Представим математический аппарат прото-

кола. Пусть H — гильбертово пространство 

кубитов, Dilithium = (KeyGen, Sign,Verify) — 

стандартная постквантовая схема подписи на 

решетках, Uσ — унитарный оператор, зави-

сящий от подписи σ, и QKD(n) — протокол 

квантового распределения ключей, генери-

рующий n-битный ключ. 

Унитарный оператор для одного бита за-

пишем в виде 
 

σ

,          если σ 0,

 (θ ) π
( ), если σ 1,
2

i

i z i

z i

I

U R
R
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

  


  
 

где  I — тождественный оператор; 

Rz (θ) — оператор вращения вокруг оси Z. 
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Преобразование подписи σ из Dilithium  

в квантовое состояние нетривиально из-за 

структуры Rq. Необходимо использовать би-

нарное разложение нескольких старших би-

тов σi (например, 4—8 бит вместо log2q). 

Комбинируем с хешированием для умень-

шения размерности, т. е. вычисляем h = 

= Truncate(Hash(σ)) (усеченный хеш) и коди-

руем h в кубиты через Rz(hi ∙ π/2).  

Далее везде вместо hi будем использовать 

обозначение σi. 

Выбор поворота θ = σᵢ ∙ π/2 обусловлен ор-

тогональностью для разных битов. Если 

σᵢ = 0, то θ = 0 и Rz(0) = I. При σᵢ = 1 имеем 

θ = π/2 и Rz(π/2) добавляет фазу 90°. Это га-

рантирует, что состояния для σᵢ = 0 и σᵢ = 1 

будут ортогональны при измерении в пра-

вильном базисе. 

Также такой выбор сохраняет информа-

цию. Фаза π/2 является минимальным нену-

левым углом, который достаточно велик для 

детектирования (в отличие от малых углов, 

чувствительных к шуму), но достаточно мал, 

чтобы избежать избыточного усложнения 

схемы (например, π дало бы ‒1, но это менее 

информативно). 

Кодировка θ = σᵢ ∙ π/2 обеспечивает каждо-

му биту σᵢ соответствующий уникальный по-

ворот. Зная θ, можно восстановить σᵢ, так как 

θ кратен π/2. 

Угол π/2 усложняет подбор σᵢ без знания 

|ψₛₖ⟩, так как eiπ/2 = i, а мнимая единица за-

трудняет определение фазы из-за теоремы  

о запрете клонирования. Это выражается  

в ненаблюдаемости фазы, корпускулярно-

волновом дуализме и запутанности состоя-

ния. Попытка подделать подпись требует 

точного знания фазы, что невозможно из-за 

той же теоремы, а также из-за «маскировки». 

Величина Rz(π/2) реализуется одним эле-

ментарным гейтом в большинстве квантовых 

платформ: в частности, на сверхпроводящих 

кубитах или ионах. Для θ = π/2 ошибки деко-

геренции менее критичны, чем для малых 

углов. Выбор остановили на π/2, потому что 

в экспериментах на IBM Quantum меньшие 

углы давали слишком много ложных сраба-

тываний из-за шума.  

Все приведенные аргументы подтверждают 

обоснованность выбора θ = σᵢ ∙ π/2. 

Выбор оператора Uσ обусловлен следую-

щими соображениями. Оператор Uσ строится 

как тензорное произведение однокубитных 

вращений.  

Состояние кубита после Rz(θ) будет вычис-

лено по формуле Rz(θ)|1⟩ = eiθ|1⟩. Если ис-

ходное состояние |ψsk⟩ содержит суперпози-

цию, например, |+⟩ = , то Rz(θ)|+⟩ = 

= . Это позволяет кодировать угол 

θi = σi ∙ π/2 в фазу кубита. 

При измерении в стандартном базисе 

({|0⟩, |1⟩}) фаза не разрушается, но ее можно 

проверить, переведя в базис X или Y. Вери-

фикация через степень сохранения целостно-

сти и неизменности информации требует, 

чтобы Uσ была унитарной и обратимой, 

а Rz(θ) удовлетворяло этому условию. Этим 

объясняется выбор вращения Rz. Вращения 

Rx и Ry меняют не только фазу, но и базисные 

состояния, что усложняет верификацию. 

Выбор фазовой кодировки Rz обусловлен 

не разрушаемостью при измерении, а защи-

щенностью от клонирования и совместимо-

стью со степенью сохранения целостности 

и неизменности информации. 

Действительно, фаза не влияет на вероят-

ности исходов при измерении в базисе 

{|0⟩, |1⟩}, но обнаруживается в базисе X или 

Y, что используется в верификации. Без зна-

ния |ψsk⟩ невозможно восстановить углы θi, 

так как произвольное состояние нельзя точно 

скопировать по теореме о запрете клониро-

вания.  

Рассмотрим, как генерируется квантовое 

доказательство ϕσ. Применяем унитарный 

оператор Uϭ к квантовому ключу |ψsk⟩: 
 

|ϕσ⟩ = Uϭ|ψsk⟩, Uσ = Rz(σi  ∙π/2), 
 

где Rz — вращение вокруг оси Z на угол, заданный 

битами σi;  

   — тензорное умножение. 

 

Биты подписи σi вычисляются из sk и M ал-

горитмом Dilithium, с использованием би-

нарного разложения нескольких старших би-

тов и дальнейшего хеширования. Биты сек-

ретного ключа ski скрыты в квантовом ключе 

∣ψsk⟩. 
На следующем шаге арбитр верифицирует 

(M, σ, |ϕσ⟩), pk, |ψsk⟩. Проводит классическую 

проверку Dilithium.Verify (pk, M, σ), если 

верно, подпись принимается, в противном 

случае отклоняется. Далее арбитр проводит 

квантовую проверку, вычисляя перекрытие 

(степень сохранения целостности и неизмен-

ности информации) между |ϕσ⟩ и |ψsk⟩: 
 

F = , 

 
где F-квадрат — амплитуда вероятности перехода 

между состояниями.  
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Если F ≥ 1 ‒ ε (для малого ε), подпись при-

нимается. 

 

Теорема 1 (Стойкость QDS-Hybrid  

в модели qCMA) 

Пусть Dilithium обладает EUF-CMA 

(Existential Unforgeability under Chosen 

Message Attack) — стойкостью в квантовой 

случайной оракульной модели (QROM) 

с преимуществом не более 

 

 (λ) ≤ ε1(λ). 

 

Здесь и далее под Adv понимается верхняя 

граница. 

QKD обеспечивает секретность в модели 

универсальной композиции (UC) с прене-

брежимо малой ошибкой:  

 

(λ) ≤ ε2(λ) = negl(λ). 

 

Квантовая верификация устойчива к атакам 

на подмену состояний с вероятностью успеха 

не больше чем ε3(λ). 

Пусть квантовая верификация удовлетво-

ряет QZK-свойствам (полнота, корректность, 

нулевое разглашение). 

Тогда преимущество противника в модели 

EUF-qCMA для QDS-Hybrid ограничено 

суммой преимуществ атак на отдельные 

компоненты:  

 

(λ) ≤ ε1(λ)+ ε2(λ)+ ε3(λ). 

 

Доказательство 

Примененные обозначения (λ) 

указывают на преимущества атакующего ал-

горитма A в успешном проведении атаки  

на схему Dilithium в модели EUF-CMA с па-

раметром безопасности λ. Параметр λ обыч-

но отражает уровень безопасности, в частном 

случае — это длина ключа или параметр 

сложности. (λ) является пре-

имуществом потенциального атакующего 

в успешном нарушении безопасности QKD-

протокола с параметром λ в модели универ-

сальной композиционной безопасности. То 

есть это вероятность того, что злоумышлен-

ник сможет отличить реальный протокол 

QKD от идеального (абсолютно безопасного) 

или получить какую-либо полезную инфор-

мацию о ключе. Величина negl(λ) обозначает 

пренебрежимо малую функцию от λ, т. е. 

функцию, которая убывает быстрее любой 

обратной полиномиальной функции при ро-

сте λ. Это означает, что при увеличении па-

раметра безопасности вероятность успешной 

атаки становится практически нулевой. 

Определим идеальный функционал ℱHybrid = 

= (KeyGen, Sign, Verify), который пред-

ставляет  собой тройку квантовых алго-

ритмов. Отправитель генерирует ключи 

(pk, sk)←Dilithium.KeyGen(λ) и создает кван-

товое состояние 

 

|ψsk⟩ = Usk|0⟩⊗n, 

 
где Usk = QFT ∙ ( Rz(ski ∙ π/2))H{⊗n};  

Н — матрица Адамара;  

H⊗n — применение n-кратного тензорного произведе-

ния матриц Адамара.  

 

Определяем подпись Sign (sk, M)→(σ,|ϕσ⟩), 
т. е. вычисляем σ←Dilithium.Sign(sk, M) 

и применяем Uσ = ( Rz(σi   π/2) к состоя-

нию |ψsk⟩. 
 

И, наконец, осуществляем проверку 

Verify (pk, M, (σ,|ϕσ⟩))→{0,1}. Сначала про-

веряем Dilithium.Verify (pk, M, σ), затем вы-

числяем  

 

F = . 

 

Подпись принимается, если F ≥ 1 ‒ ε.  

Противник A в модели qCMA получает от-

крытый ключ pk←KeyGen(1λ) и квантовый 

верификационный ключ |ψsk⟩. Он может вы-

полнять квантовые запросы на подпись для 

сообщений Mi: Sign(Mi)→(σi,| ⟩), где 

| ⟩ = |ψsk⟩. 

Противник А также может производить 

квантовые вычисления, включая запросы к 

оракулу. Главной задачей A является валид-

ная подпись (M, σ,| ⟩) для нового M*∉{Mi}. 

Для построения алгоритма редукции B 

предположим, что существует A, нарушаю-

щий EUF-qCMA-стойкость QDS-Hybrid  

с преимуществом ε(λ). Построим алгоритм B, 

который использует A для нарушения либо 

Dilithium, либо QKD. 

Пусть алгоритм В получает pk от EUF-

CMA-вызова для Dilithium, затем имитирует 

|ψsk⟩ через QKD-симулятор, |ψs̃k⟩ = QKD-

Sim(pk) (по теореме о секретности QKD, 

|ψ̃sk⟩ ≈ |ψsk⟩). 
При запросе Sign(Mi) осуществляется за-

прос  σi у EUF-CMA-оракула. Затем вычис-

ляется  

 

| ⟩ = |ψ̃sk⟩ 

 

и возвращается (σi,| ⟩). 
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Противник A возвращает подделку (M, 

σ,| ⟩). 
Возникают два случая. Пусть σ* — валид-

ная подпись Dilithium для M*, тогда редук-

ционный алгоритм B нарушает EUF-CMA-

стойкость Dilithium. В этом случае вероят-

ность  

 

P[валидная подпись] ≥ ε(λ) ‒ ε2(λ). 

 

В противоположном варианте σ* невалид-

на, но  

 

F(| ⟩, |ψsk⟩) ≥ 1 ‒ ε. 

 

Тогда требуется либо угадать  без зна-

ния sk (невозможно из-за QKD), либо нару-

шить квантовую верификацию (атака на 

QKD). Поэтому вероятность  

 

P[невалидна] ≤ ε2(λ) = negl(λ). 

 

В результате получаем, что 

 

(λ) ≤ (λ) + 

+ (λ). 

 

Защита от квантовых атак обеспечивается 

следующими фактами. Атака на фазу (аналог 

Шора) для подбора Uσ∗ требует решить зада-

чу скрытой подгруппы для sk, что эквива-

лентно взлому QKD и устранению коллизии 

в квантовом хеше. Вероятность создать |ϕσ∗⟩ 
с F ≥ 1 − ε без знания sk будет P ≤ 1/qn (со-

гласно лемме о перекрытии случайных со-

стояний). 

Рассмотрим квантовые атаки на верифика-

цию. Введем квантового противника AQ, ко-

торый получает ∣ψsk⟩, но не может его скопи-

ровать. Он обладает возможностью делать 

квантовые запросы к оракулу подписи OSign, 

получая пары (σ,∣ϕσ⟩). Его целю является со-

здание поддельного состояния ∣ϕσ∗⟩ для но-

вого M∗, чтобы выполнялось неравенство: 

 

F(∣ϕσ∗⟩,Uσ∣ψsk⟩) ≥ 1 − ε. 

 

Но без знания ∣ψsk⟩ вероятность успеха не 

больше чем ε3(λ), где ε3(λ) =  + negl(λ), так 

как теорема о запрете клонирования делает 

∣ψsk⟩ неугадываемым. Даже с квантовыми 

запросами к оракулу подписи OSign, AQ не 

может извлечь достаточно информации 0∣ψsk⟩. 
Теперь рассмотрим гибридного противни-

ка A, который атакует Dilithium (классиче-

ская часть), но обладает преимуществом не 

более чем ε1(λ). При атаке на QKD (перехват 

ключа) его преимущество не более чем ε2(λ). 

Соответственно, при атаке на квантовую ве-

рификацию (подмена ∣ϕσ⟩) он обладает пре-

имуществом не более чем ε3(λ). Поэтому об-

щее преимущество: 

 

AdvA ≤ ε1(λ) + ε2(λ) + ε3(λ). 

 

Пример расчета для λ = 128. Если размер-

ность решетки n = 256, q = 8380417 (как 

в Dilithium-3), то ε1(λ) ≤ 2−128, ε2(λ) ≤ 2−256, 

ε2(λ) ≤ 2−256 + шумовые ошибки. 

 

AdvQDS-Hybrid ≤ 2−128 + 2−256 + 2−256 ≈ 2−128. 

 

QDS-Hybrid наследует вычислительную 

стойкость к атакам на решетках от Dilithium, 

безусловную стойкость к квантовым ата-

кам — от QKD.  

Таким образом, протокол устойчив даже 

против противника с квантовым компьюте-

ром. Теорема полностью доказана. 

Замечание 

Для гибридных схем с независимыми ком-

понентами, такими как классическая под-

пись + QKD, композиционная безопасность 

обычно аддитивна. Аналогичные аддитивные 

границы встречаются в стандартах NIST 

постквантовой криптографии, например, для 

гибридного TLS 1.3. Атакующий пытается 

подделать классическую подпись (ε1) или 

перехватить квантовый ключ (ε2), или под-

менить состояние (ε3). Вероятность успеха 

равна сумме вероятностей для каждой атаки. 

Пусть ΠQKD = (KeyGenQKD, Enc, Dec) — 

протокол квантового распределения ключей, 

ΠSIG = (KeyGenSIG, Sign, Verify) — схема под-

писи Dilithium и ΠHybrid = (KeyGen, Sign, Veri-

fy) — наш гибридный протокол. 

Обозначим идеальные функционалы: 

ℱQKD — идеальное квантовое распределение 

ключей, ℱSIG — идеальная схема подписи 

и ℱHybrid — идеальный гибридный протокол. 

 

Теорема (о композиционной безопасности 

QDS-Hybrid)  

Пусть протокол ΠQKD UC эмулирует иде-

альное квантовое распределение ключей 

ℱQKD, схема подписи Dilithium.ΠSIGUC эму-

лирует идеальную схему подписи ℱSIG. Кван-

товая верификация удовлетворяет QZK (пол-

нота, корректность, нулевое разглашение). 

Тогда ΠHybrid UC будет эмулировать идеаль-

ный гибритный функционал ℱHybrid. 
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Доказательство 

Идеальный функционал ℱHybrid генерирует 

(pk, sk, ∣ψsk⟩), где ∣ψsk⟩ — квантовое состоя-

ние, привязанное к sk. По запросу (sk, M) 

возвращает подпись (σ,∣ϕσ⟩), где ∣ϕσ⟩ = 

= Uσ∣ψsk⟩. Арбитр принимает (M, σ,∣ϕσ⟩), про-

веряет соответствие ∣ϕσ⟩ и Uσ∣ψsk⟩, возвраща-

ет 1, если подпись принята, или 0, если под-

пись отклонена. 

Симулятор 𝒮 должен эмулировать реаль-

ный протокол ΠHybrid для противника A, не 

имея доступа к секретным данным. 

Алгоритм 𝒮 производит эмуляцию KeyGen, 

получает (pk,∣ψsk⟩) от ℱHybrid и передает их A. 

На следующем шаге происходит эмуляция 

Sign, т. е. при запросе подписи для Mi си-

мулятор 𝒮 запрашивает ℱHybrid и получает 

(σi,∣ϕσi⟩). Далее он передает противнику A 

(σi,∣ϕσi⟩). 
Последний шаг состоит в эмуляции Verify. 

При верификации (M∗, σ∗,∣ϕσ∗⟩) симулятор 𝒮 

запрашивает ℱHybrid, и если ℱHybrid принимает 

подпись, то 𝒮 возвращает 1, иначе будет 0. 

Докажем, что для любого A выполняется: 

 

|P[RealΠ(A) = 1] ‒ P[IdealF, S(A) = 1]| ≤ negl(λ). 

 

Рассмотрим три гибридных эксперимента: 

— в реальном протоколе (Гибрид 0) про-

тивник A взаимодействует с ΠHybrid; 

— в Гибриде 1 происходит замена ΠQKD на 

ℱQKD с симулятором 𝒮QKD; 

— в Гибриде 2 заменяется ΠSIG на ℱSIG 

с симулятором 𝒮SIG. 

Докажем три леммы, необходимые для по-

лучения результата теоремы: 

1. Лемма 1 (QKD-эмуляция): 
 

∣P[Гибрид0 = 1] ‒ P[Гибрид1 = 1]| ≤ 

≤ (λ) = negl(λ). 

 

Доказательство следует из UC-безопас-

ности ΠQKD. 

2. Лемма 2 (Dilithium-эмуляция): 

 

∣P[Гибрид1 = 1] ‒ P[Гибрид2 = 1]| ≤ 

≤ (λ) = negl(λ). 

 

Доказательство следует из UC-безопас-

ности ΠSIG. 

3. Лемма 3 (Квантовая верификация) 

В Гибриде 2, если A подделывает ∣ϕσ∗⟩ без 

знания ∣ψsk⟩, то 

 

P[Accept] ≤ AdvQZK(λ) = negl(λ). 

 

Доказательство 

Из QZK-свойств следует, что A не может 

создать ∣ϕσ∗⟩ с F ≥ 1 ‒ ε без доступа к ∣ψsk⟩. 
Поэтому вероятность успеха ограничена 

negl(λ). 

Комбинируя леммы 1—3, получим нера-

венство: 

 

∣P[RealΠ(A) = 1] ‒ P[IdealF,S(A) = 1]| ≤  

≤ (λ) + 

+ AdvQZK(λ) ≤ negl(λ). 

 

Таким образом, ΠHybrid безопасен в UC-мо-

дели при условии безопасности его компо-

нентов. Этот факт означает, что невозможно 

атаковать отдельные компоненты, не суще-

ствует новых уязвимостей при композиции 

и сохраняются свойства при произвольном 

комбинировании с другими протоколами. 

2.2. Псевдокод протокола 

Для наглядного изображения этапов работы протокола QDS-Hybrid представим упрощенный псев-

докод, охватывающий основные процедуры: 

\documentclass[12pt]{article} 

\usepackage{geometry} 

\usepackage{amsmath} 

\usepackage{algorithm} 

\usepackage[noend]{algpseudocode} 
 

\title{Сокращенный псевдокод QDS-Hybrid} 

\author{} 

\date{} 
 

\begin{document} 
 

\section*{Псевдокод протокола QDS-Hybrid (сокращенная версия)} 
 

\begin{algorithm}[H] 

\caption{Setup -- инициализация параметров системы} 

\begin{algorithmic}[1] 

    \Function{Setup}{} 

        \State $\lambda \gets 256$ 
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        \State $\text{Dilithium\_Params} \gets \text{ML\_DSA\_4}$ 

        \State $\text{QKD\_Protocol} \gets \text{BB84}$ 

        \State $\text{Hash\_Function} \gets \text{Streebog}$ 

        \State $\text{Quantum\_Network} \gets \text{True}$ 

        \State \Return params 

    \EndFunction 

\end{algorithmic} 

\end{algorithm} 
 

\begin{algorithm}[H] 

\caption{KeyGen -- генерация ключей} 

\begin{algorithmic}[1] 

    \Function{KeyGen}{$params$} 

        \State $sk_{classic}, pk_{classic} \gets \text{Dilithium.KeyGen}()$ 

        \State $sk_{binary} \gets \text{to\_binary}(sk_{classic})$ 

        \State Initialize $qubits = []$ 

        \ForAll{$bit \in sk_{binary}$} 

            \If{$bit == '0'$} 

                \State Append $\ket{0}$ to $qubits$ 

            \Else 

                \State Append $R_z(\pi/2)\ket{1}$ to $qubits$ 

            \EndIf 

        \EndFor 

        \State $\psi_{sk} \gets \text{apply\_Hadamard}(qubits)$ 

        \State $\psi_{sk} \gets \text{apply\_QFT}(\psi_{sk})$ 

        \State $\text{quantum\_key} \gets \psi_{sk}$ 

        \State \Return $\{sk_{classic}, pk_{classic}, quantum\_key\}$ 

    \EndFunction 

\end{algorithmic} 

\end{algorithm} 
 

\begin{algorithm}[H] 

\caption{Sign -- процесс создания подписи} 

\begin{algorithmic}[1] 

    \Function{Sign}{$message, keys, params$} 

        \State $\sigma_{classic} \gets \text{Dilithium.Sign}(keys.sk, message)$ 

        \State $\sigma_{binary} \gets \text{truncate\_hash}(\text{hash\_signature}(\sigma_{classic}))$ 

        \State $U_\sigma \gets \bigotimes [R_z(bit \cdot \pi/2)]$ for all $bit \in \sigma_{binary}$ 

        \State $\phi_\sigma \gets U_\sigma \cdot keys.quantum\_key$ 

        \State \Return $\{message, signature\_classic: \sigma_{classic}, signature\_quantum: \phi_\sigma\}$ 

    \EndFunction 

\end{algorithmic} 

\end{algorithm} 
 

\begin{algorithm}[H] 

\caption{Verify -- процедура верификации} 

\begin{algorithmic}[1] 

    \Function{Verify}{$signed\_data, pk, qkey, params$} 

        \State $\sigma_{classic} \gets signed\_data.signature\_classic$ 

        \State $\phi_\sigma \gets signed\_data.signature\_quantum$ 

        \State $valid \gets \text{Dilithium.Verify}(pk, signed\_data.message, \sigma_{classic})$ 

        \If{$not \; valid$} 

            \State \Return False 

        \EndIf 

        \State $U_\sigma \gets \bigotimes [R_z(bit \cdot \pi/2)]$ for all $bit \in \sigma_{binary}$ 

        \State $\text{expected\_state} \gets U_\sigma \cdot qkey$ 

        \State $fidelity \gets \text{SWAP\_Test}(\phi_\sigma, expected\_state)$ 

        \State $\varepsilon \gets 0.01$ 

        \State \Return $fidelity \geq 1 - \varepsilon$ 

    \EndFunction 

\end{algorithmic} 

\end{algorithm} 
 

\end{document} 
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Данный псевдокод отражает ключевые 

компоненты протокола: инициализацию си-

стемы, генерацию классических и квантовых 

ключей, процесс подписания и верификации, 

а также механизмы управления состоянием. 

Он может служить основой для программ-

ной реализации на платформах вроде Qiskit 

или Cirq.  

2.3. Генерация квантовых ключей,  

подписание и верификация 

В протоколе QDS-Hybrid квантовый ключ 

|ψₛₖ⟩ играет критическую роль, так как он 

должен быть связан с классическим секрет-

ным ключом sk схемы Dilithium, но при этом 

оставаться верифицируемым без его раскры-

тия. Для генерации ключа можно использо-

вать квантовое хеширование или квантовое 

кодирование классического ключа.  

Рассмотрим возможные подходы. 

1. Квантовое хеширование на основе уни-

версальных хеш-функций (UHF) [3] 

Преобразуем sk в квантовое состояние че-

рез квантовый аналог классического хеши-

рования. 

Алгоритм генерации |ψₛₖ⟩ предполагает раз-

ложение ключа, квантовую кодировку и за-

щиту от клонирования. Пусть sk = (s₁, s₂, ..., 

sₙ) — секретный ключ Dilithium (вектор в мо-

дульной решетке). Каждый элемент sᵢ пред-

ставляется в бинарном виде: sᵢ = (b₁, b₂, ..., 

bₖ), где bⱼ∈{0,1}.  

Для каждого bⱼ готовится кубит в состоя-

нии: bⱼ = 0→|0⟩, bⱼ = 1→|1⟩. Затем применяет-

ся квантовое преобразование Фурье (QFT) 

для создания суперпозиции: 
 

|ψsk⟩ = QFT ∙ ( |si⟩). 
 

Преобразование sk в |ψₛₖ⟩ через QFT воз-

можно, но требуется фазовое кодирование 

битов sk в кубиты. После фазового кодиро-

вания применяем QFT, для создания перепу-

танного состояния необходима динамическая 

генерация |ψₛₖ⟩ из-за декогеренции. 

В качестве альтернативы можно использо-

вать хаар — случайное квантовое состояние 

(Haar-random state), если sk достаточно длин-

ный. Применяем контролируемые фазовые 

вращения Rz(θᵢ), где θᵢ зависят от sk. Имеем 
 

|ψsk⟩ = Rz(θi) ∙ QFT|si⟩. 
 

В результате получим устойчивость к кван-

товым атакам, т. е. без знания sk нельзя вос-

становить состояние и возможность провер-

ки подлинности через SWAP-тест или кван-

товую томографию. При этом алгоритм тре-

бует много кубитов порядка O(nlogq) для 

Dilithium и достаточно чувствителен к шуму. 

2. Квантовое кодирование через алгоритм 

Шора — Китаева [11] 

В протоколе QDS-Hybrid квантовый ключ 

|ψsk⟩ можно построить на основе классиче-

ского секретного ключа sk схемы Dilithium с 

использованием алгоритма Шора — Китаева.  

Разберем, как именно унитарный оператор 

Usk конструируется из sk. 

Секретный ключ sk — вектор в модульной 

решетке, представленный в бинарной форме 

sk = (s₁, s₂, ..., sₙ), si∈{0,1}k, где k — длина би-

товой строки каждого элемента si. 

Нужно преобразовать sk в унитарный опе-

ратор Usk, который генерирует состояние 

|ψsk⟩ = Usk|0⟩⊗n. Построим Usk по алгоритму 

Шора — Китаева. Метод основан на аппрок-

симации унитарных операторов с помощью 

набора элементарных гейтов (теорема Соло-

вея — Китаева).  

Для Usk применяется следующий алгоритм. 

Каждый бит si ключа sk определяет угол по-

ворота θi = si ∙ π/q, где q — модуль из пара-

метров Dilithium, например, q = 8380417 для 

Dilithium-3. Оператор Usk состоит из поэтап-

ного применения следующих преобразова-

ний. Применим матрицу Адамара H ко всем 

кубитам:  
 

H⊗n|0⟩⊗n = . 

 

Далее произведем фазовые вращения Rz(θi) 

для каждого кубита Rz(θi) =  и сдела-

ем квантовое преобразование Фурье (QFT) 

для создания перепутанности  
 

Usk = Rz(θi)) H⊗n. 
 

Окончательно получаем  
 

|ψsk⟩ = Usk|0⟩⊗n = Rz(θi) |+⟩). 
 

Этот алгоритм позволяет использовать 

квантовую коррекцию ошибок, но возникает 

сложность реализации Uₛₖ на NISQ-устрой-

ствах. 

Альтернативным подходом к верификации 

квантовых состояний служит SWAP-тест. 

3. SWAP-тест [12] 

Арбитр готовит вспомогательный кубит 

в состоянии |+⟩ = . Применяет кон-

тролируемый SWAP-гейт (cSWAP) между 

|ϕσ⟩ и |ψₛₖ⟩, управляемый вспомогательным 

кубитом, затем измеряет вспомогательный 
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кубит в базисе X. В результате вероятность 

получить |0⟩ определяется по формуле 

 

P(0) =  = . 

 

Если P(0) ≥ (2 − ε)/2, то F ≥ 1 − ε. 

4. Квантовая томография (для малых си-

стем) 

Арбитр многократно измеряет |ϕσ⟩ в разных 

базисах (X, Y, Z), затем восстанавливает мат-

рицу плотности ρ ≈ |ϕσ⟩⟨ϕσ|. Результат срав-

нивает с теоретически правильным состоя-

нием плотности  

 

ρₜₕ = Uσ|ψₛₖ⟩⟨ψₛₖ|Uσ
†. 

 

Получаем оценку  

 

F ≈ Tr . 

 

5. Метод зеркальных измерений (Mirror 

Benchmarking) 

Арбитр применяет Uσ
† к |ϕσ⟩ (должно полу-

читься |ψₛₖ⟩, если подпись верна) и проверяет, 

совпадает ли результат с исходным |ψₛₖ⟩ че-

рез SWAP-тест. 

Алгоритм имеет меньше шумов, чем пря-

мой SWAP-тест, но требует возможности 

применять Uσ
†, что не всегда реализуемо. 

Алгоритмы защищены от атак, если зло-

умышленник не знает |ψₛₖ⟩, то он не может 

создать |ϕσ⟩ с F ≥ 1 ‒ ε. Даже при получении 

нескольких |ϕσᵢ⟩ клонирование запрещено 

теоремой о запрете клонирования. Кроме то-

го, QKD-безопасность гарантирует, что |ψₛₖ⟩ 
нельзя украсть.  

Следовательно, проверка F ≥ 1 ‒ ε возмож-

на, но требует аккуратной реализации. 

Алгоритм SWAP-теста эффективен для 

оценки сходства квантовых состояний с от-

носительно низкой сложностью и меньшими 

ресурсными затратами по сравнению с кван-

товой томографией, которая требует экспо-

ненциального числа измерений и вычисли-

тельных ресурсов для полного восстановле-

ния состояния. Метод зеркальных измерений 

(Mirror Benchmarking) предлагает более 

устойчивую и масштабируемую процедуру 

оценки качества квантовых операций, осо-

бенно в условиях шумных систем, обеспечи-

вая баланс между точностью и затратами по 

сравнению с традиционной томографией. 

Таким образом, SWAP-тест предпочтителен 

для быстрой проверки близости состояний, 

квантовая томография — для детального 

анализа, а метод зеркальных измерений — 

для практического бенчмаркинга в реальных 

квантовых устройствах. 

 

3. Безопасность и устойчивость 

Протокол QDS-Hybrid сочетает крипто-

стойкость постквантовых алгоритмов 

(Dilithium) с безусловной безопасностью 

квантовой верификации.  

3.1. Выполнение свойств QZKP 

Для того чтобы квантовая верификация 

подписи была QZKP, должны выполняться 

три утверждения: полнота, корректность и 

нулевое разглашение. При корректности 

подписи арбитр принимает ее с вероятно-

стью, не меньшей 1 − ε. Это определяет пол-

ноту. При поддельной подписи арбитр отвер-

гает ее с вероятностью не меньше чем 1 − ε, 

даже в случае обладания злоумышленником 

квантовым компьютером, что указывает на 

корректность. Нулевое разглашение опреде-

ляется тем, что арбитр не получает никакой 

информации о секретном ключе sk в процес-

се верификации. 

Утверждение о полноте 

При корректной подписи σ арбитр прини-

мает ее с вероятностью, не меньшей 1 − ε. 

Доказательство 

Нужно доказать, что для честно сгенери-

рованной подписи σ = Sign (sk, M) и состоя-

ния ∣ϕσ⟩ = Uσ∣ψsk⟩, SWAP-тест или Mirror 

Benchmarking дают 

 

F(∣ϕσ⟩,Uσ∣ψsk⟩) = 1. 

 

Если в канале есть шум, то F ≥ 1 − ε, где 

ε — допустимая погрешность. 

Применим Uσ к квантовому ключу ∣ψsk⟩, 
получим ∣ϕσ⟩ = Uσ∣ψsk⟩. Проведем SWAP-тест 

между ∣ϕσ⟩ и Uσ∣ψsk⟩: 
 

. 

 

При существовании шума F = 1 − ε для ве-

роятности есть оценка: 

 

. 

 

Протокол удовлетворяет свойству полноты, 

так как корректные подписи принимаются 

с высокой вероятностью. 

Рассмотрим влияние декогеренции на пол-

ноту (Completeness). Если ∣ϕσ⟩ подвергается 

шуму, то F = ∣⟨ϕσ∣Uσ∣ψsk⟩∣2 < 1. Нужно ввести 

порог принятия F ≥ 1 − ε, где ε — допусти-

мая погрешность. 
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Утверждение о корректности 

Если подпись σ∗ подделана, то арбитр от-

вергает ее с вероятностью не меньшей чем 

1 − ε. 

Доказательство 

Нужно доказать, что для любого состояния 

∣ϕσ∗⟩, созданного без знания ∣ψsk⟩, вероят-

ность того, что величина F ≥ 1 − ε пренебре-

жимо мала. Учесть квантовые атаки, такие 

как попытки угадать ∣ψsk⟩ и/или подмену ∣ϕσ⟩ 
в канале передачи. 

Действительно, без знания ∣ψsk⟩ злоумыш-

ленник может только отправить случайное 

состояние ∣ϕσ∗⟩ и попытаться скопировать 

∣ψsk⟩ (нарушая теорему о запрете клонирова-

ния). Для случайного состояния 

 

E[F] = E[∣⟨ϕσ∗∣Uσ∣ψsk⟩∣2] ≤ . 

 

Из неравенства концентрации имеем оценку: 

 

P[F ≥ 1 − ε] ≤ e−2nε. 

 

Протокол удовлетворяет свойству коррект-

ности, так как поддельные подписи обнару-

живаются с вероятностью ≈1. 

Рассмотрим влияние декогеренции на кор-

ректность (Soundness). Злоумышленник мо-

жет попытаться использовать шум для мас-

кировки подделки. Например, отправить со-

стояние ∣ϕσ∗⟩, которое из-за шума случайно 

окажется близко к Uσ∣ψsk⟩. 
Без шума для поддельного ∣ϕσ∗⟩ имеем 

, отсюда следует, что P(accept) ≈ 0,5. 

Пусть шум добавляет случайную погреш-

ность Δ, так что F(fake) ≤  + Δ. Поэтому, 

чтобы подделка не прошла, нужно 

 + Δ < 1 − ε. 

Например, для n = 256 и ε = 0,1 имеем 

Δ < 0,9 – 2‒256 ≈ 0,9. 

На практике Δ зависит от уровня шума 

(например, 1—5 % для NISQ-устройств). 

Отсюда можно сделать вывод о том, что 

корректность сохраняется при  ≫ Δ + . 

Утверждение о нулевом разглашении 

(Zero-Knowledge) 

Арбитр не получает никакой информации 

о sk в процессе верификации. 

Доказательство 

Нужно доказать, что арбитр видит только 

∣ϕσ⟩ = Uσ∣ψsk⟩, но не может извлечь sk. Необ-

ходимо показать, что ψsk псевдослучайно, 

если sk неизвестен и Uσ не раскрывает sk. 

Псевдослучайность ∣ψsk⟩ следует из его 

представления 
 

∣ψsk⟩ = QFT(H⊗n∣sk⟩) 
 

и внешне выглядит как случайное состояние 

без знания sk, и извлечение sk требует реше-

ния задачи скрытой подгруппы, что является 

квантовотрудной. 

Имеется защита от утечки информации, так 

как арбитр видит только ∣ϕσ⟩ = Uσ∣ψsk⟩, и без 

знания обратного оператора Uσ, который за-

висит от sk, он не может восстановить ∣ψsk⟩. 
Можно построить симулятор Sim(σ) = 

= Uσ∣random⟩, который генерирует ∣ϕσ⟩ без 

знания sk, используя только σ. 

Протокол не раскрывает sk, т. е. удовлетво-

ряет нулевому разглашению. 

Протокол QDS-Hybrid действительно мо-

жет реализовать QZKP, если |ψₛₖ⟩ генериру-

ется псевдослучайно (QFT + QKD). Uσ коди-

рует σ без утечки sk (фазовая кодировка). 

Верификация использует SWAP-тест или 

зеркальные измерения. 

3.2. Защита QDS-Hybrid от атак типа 

«подмена состояния» 

Атака «подмена состояния» (State 

Substitution Attack) возникает, когда зло-

умышленник пытается передать получателю 

некорректное квантовое состояние |ϕσ'⟩ вме-

сто истинного |ϕσ⟩, чтобы подделать подпись. 

В протоколе QDS-Hybrid такая атака 

предотвращается за счет наличия квантовой 

верификации, прохождения SWAP-теста для 

обнаружения подмены, квантовой коррекции 

ошибок и криптографической привязки 

к Dilithium.  

Действительно, арбитр проверяет перекры-

тие (степень сохранения целостности и неиз-

менности информации) между полученным 

|ϕσ'⟩ и ожидаемым состоянием Uσ|ψsk⟩: 
 

F = |ϕσ'⟩ Uσ|ψsk⟩|2. 
 

Если F ≥ 1 − ε, то подпись принимается, 

т. е. состояние |ϕσ'⟩ корректно. В случае про-

тивоположного неравенства F < 1 − ε под-

пись отвергается, потому что была обнару-

жена подмена. 

Без знания |ψsk⟩ злоумышленник не может 

создать |ϕσ'⟩ с высоким F. Любая попытка 

подмены приведет к ортонормированности 

состояний, т. е. F ≈ 0. 

Арбитр использует квантовый SWAP-тест 

для проверки |ϕσ'⟩. Он готовит вспомогатель-

ный кубит в состоянии |+⟩, затем применяет 

контролируемый SWAP между |ϕσ'⟩ и Uσ|ψsk⟩. 
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После этого измеряется вспомогательный 

кубит. Если вероятность P(0) = (1 + F)/2 ≈ 1, 

то подпись верна. В случае P(0) ≈ 0,5 делаем 

заключение о том, что подпись подделана. 

Например, злоумышленник отправит слу-

чайное состояние |ϕσ'⟩ = |0⟩, тогда F = 

= |⟨ψsk|Uσ
†|0⟩|2 ≈  является ничтожно ма-

лым, т. е. SWAP-тест с высокой вероятно-

стью обнаружит подмену. 

Если злоумышленник попытается исказить 

состояние в канале (например, внести шум), 

то протокол использует для защиты поверх-

ностные коды (Surface Codes) для исправле-

ния ошибок и возможность повторной пере-

дачи |ϕσ⟩ при обнаружении декогеренции. 

Даже при модификации состояния противни-

ком арбитр либо восстановит |ϕσ⟩, либо от-

клонит подпись. 

Кроме того, подпись σ проверяется класси-

чески через Dilithium.Verify (pk, M, σ). Если σ 

невалидна, то квантовая верификация даже 

не запускается.  

При «гибридной атаке» злоумышленник не 

может подделать только квантовую часть, 

так как для этого требуется угадать и σ, 

и |ϕσ⟩. Для Dilithium-3 вероятность успеха 

меньше 2⁻¹²⁸. 

Если злоумышленник не знает |ψsk⟩, то ве-

роятность успешной подмены равна 

 

P[Подмена] ≤   

(например, 2−256 для n = 256). 

 

Таким образом, QDS-Hybrid практически 

неуязвим к атакам этого типа в рамках со-

временных квантовых и классических угроз. 

3.3. Устойчивость к шуму 

В протоколе QDS-Hybrid ошибки в кванто-

вых каналах (шум, потери фотонов, декоге-

ренция) критически влияют на передачу со-

стояния |ψₛₖ⟩ и верификацию подписи.  

Разберем, как протокол может быть моди-

фицирован для устойчивой работы в реаль-

ных условиях. 

Основными источниками ошибок являются 

декогеренция кубитов, потери в квантовом 

канале и шумы. 

Рассмотрим методы защиты от ошибок, та-

ких как квантовая коррекция ошибок [13], 

протоколы повторной передачи [14], посткван-

товая коррекция степени сохранения целост-

ности и неизменности информации [15 ; 16]. 

При применении квантовой коррекции 

ошибок состояние |ψₛₖ⟩ кодируется в логиче-

ские кубиты с помощью поверхностного кода. 

Арбитр периодически исправляет ошибки, 

используя синдромные измерения. Напри-

мер, перед передачей отправитель кодирует 

|ψₛₖ⟩ в 7 физических кубитов. Арбитр приме-

няет коррекцию через синдром X- и Z-ста-

билизаторы. Такой алгоритм требует десят-

ков кубитов для одного логического (непрак-

тично в NISQ-эру). 

При использовании протоколов повторной 

передачи, если арбитр не получает |ψₛₖ⟩ (из-за 

потерь), то отправитель повторяет передачу. 

Для защиты от шума используется квантовая 

телепортация с EPR-парами [17]. Например, 

отправитель и арбитр заранее обмениваются 

EPR-парами (|Φ⁺⟩). |ψₛₖ⟩ телепортируется че-

рез классический канал (с коррекцией на 

стороне арбитра). Такой подход устойчив 

к потерям (повторные попытки), и телепор-

тация компенсирует шум. 

В случае применения постквантовой кор-

рекции степени сохранения целостности 

и неизменности информации арбитр прини-

мает «шумное» состояние |ϕσ'⟩ ≈ |ϕσ⟩. Затем 

он вычисляет F' = |⟨ϕσ'|Uσ|ψₛₖ⟩|² и корректиру-

ет порог верификации. Если F' ≥ 1 – ε − δ 

(где δ — оценка шума), подпись принимает-

ся. В качестве формулы коррекции возьмем 

εновое = ε + , где Fшум — степень 

сохранения целостности и неизменности ин-

формации из-за шума. 

Протокол QDS-Hybrid может работать в ус-

ловиях ошибок, если используется QEC или 

повторная передача. Fidelity-порог динами-

чески корректируется, и есть классический 

аварийный режим для критических сбоев. 

Для NISQ-устройств оптимальной будет 

комбинация — телепортация EPR-пар с пост-

квантовой коррекцией степени сохранения 

целостности и неизменности информации 

и локальной QEC для |ψₛₖ⟩. Это обеспечит ба-

ланс между безопасностью и устойчивостью. 

 

4. Вопросы практической реализации 

Реализация QDS-Hybrid уже возможна на 

экспериментальных платформах, но для мас-

сового внедрения требуется улучшение ста-

бильности кубитов, децентрализация при 

верификации, снижение стоимости кванто-

вых устройств и разработка междисципли-

нарных стандартов (квант + классика). 

4.1. Методы и решения децентрализации 

верификации в QDS-Hybrid 

Хотя базовая версия QDS-Hybrid использу-

ет доверенного арбитра, далее рассмотрим 

методы децентрализации, такие как MPQC 

и блокчейн. Децентрализация верификации 

в гибридных криптографических системах 

достигается за счет использования крипто-
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графии с открытым ключом и цифровых 

подписей, децентрализованного консенсуса 

блокчейна и интеграции с облачными вычис-

лениями для повышения производительно-

сти. Такой гибридный подход позволяет со-

хранять безопасность и прозрачность, одно-

временно обеспечивая масштабируемость 

и расширенные возможности верификации, 

включая новые методы идентификации. 

Комбинация QDS с блокчейном для рас-

пределенной верификации без доверенного 

арбитра с использованием смарт-контракты 

для голосования валидаторов была рассмот-

рена в работе [18]. Применение квантовых 

византийских соглашений (QBA) для устой-

чивости к злонамеренным узлам анализиру-

ется в работе [19]. Коррекция ошибок в де-

централизованных QDS с использованием 

поверхностных кодов была изучена в работе 

[20]. Гибридные подходы на основе кванто-

вых меток времени (quantum timestamps) для 

предотвращения повторного использования 

подписей в блокчейне были рассмотрены 

в работе [21]. Еще одним подходом является 

схема с пороговой подписью (TQDS), изу-

ченная в работах [22 ; 23]. 

На базе этих работ устраним зависимость 

от доверенного арбитра, протокол можно 

модифицировать с использованием следую-

щих подходов. 

Так, многопользовательская квантовая ве-

рификация (MPQC) позволяет заменить един-

ственного арбитра на группу валидаторов, 

которые совместно проверяют подпись через 

квантовые многосторонние вычисления. От-

правитель разделяет |ψₛₖ⟩ между N валидато-

рами через квантовое разделение секрета 

(QSS). Например, используя схему Шамира 

для кубитов |ψsk⟩→  |ϕi⟩, где для восста-

новления нужно k из N частей. 

Каждый валидатор проверяет свою часть 

|ϕi⟩ с помощью SWAP-теста или зеркальных 

измерений. Если больше k валидаторов под-

твердят F ≥ 1 − ε, то подпись принимается. 

В этом случае нет единой точки отказа 

и имеется устойчивость к компрометации 

части валидаторов. Но для реализации этой 

схемы требуется сложная квантовая сеть. 

Рассмотрим использование распределенного 

реестра (блокчейн) для хранения и проверки 

квантовых меток подписей. Реализация этого 

метода возможна через квантовую метку. 

Отправитель создает квантовый хеш сооб-

щения M:  
 

|HM⟩ = UM|0⟩n, 
 

где UM — квантовая схема, зависящая от M. 

Другим подходом может быть запись 

в блокчейн. Классический хеш от |HM⟩ через 

квантовую дактилоскопию записывается 

в блокчейн. Используя верификацию, полу-

чатель повторно вычисляет |HM⟩ и сравнива-

ет хеш с блокчейном (например, используя 

протокол Quantum Timelock Puzzles для при-

вязки подписей ко времени). 

Достоинством предложенных подходов яв-

ляется децентрализация, неизменяемость 

и совместимость с классической инфраструк-

турой. Но она требует гибридных (квантово-

классических) смарт-контрактов. 

Еще одним подходом к верификации явля-

ются протоколы на основе квантовой запу-

танности. Будем использовать EPR-пары для 

распределенной верификации без централь-

ного арбитра. Для этого подготавливаем за-

путанные состояния. Отправитель и валида-

торы заранее обмениваются EPR-парами 

|Φ+⟩ = . Отправитель телепортирует 

|ϕσ⟩ валидаторам через EPR-пары. Валидато-

ры измеряют полученные состояния в согла-

сованном базисе и голосуют за валидность. 

В этом подходе добиваемся безусловной  

безопасности, так как запутанность обнару-

живает подслушивание, но возникает огра-

ниченная дистанция передачи из-за потерь 

в канале.  

При использовании криптографии на осно-

ве атрибутов (ABQDS) верификация зависит 

от атрибутов участников, а не от центрально-

го арбитра. Каждый валидатор получает 

квантовый сертификат |Certi⟩, подтвержда-

ющий его права. Подпись считается валид-

ной, если ее подтвердят валидаторы с опре-

деленными атрибутами (более 50 % из «до-

веренной» группы): например, адаптация 

Attribute-Based Signatures для квантовых со-

стояний. При таком подходе получаем гиб-

кость, так как политики верификации 

настраиваются, но имеется сложность управ-

ления квантовыми сертификатами. 

При использовании схемы TQDS подпись 

собирается из квантовых долей, а верифика-

ция требует порогового числа участников. 

Классическая подпись σ и квантовое состоя-

ние |ϕσ⟩ разделяются через квантовый вари-

ант схемы Шамира. Любые k из N участни-

ков могут восстановить и проверить подпись. 

В этом случае имеем устойчивость к отказу 

части узлов, но требуется сложная квантовая 

арифметика. 

В качестве кратковременного решения 

можно использовать квантовый блокчейн 

с гибридными (классическими + QKD) узла-
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ми: например, запись fidelity-показателей 

в распределенный реестр. 

Для долгосрочной перспективы требуется 

развитие MPQC, для полностью децентрализо-

ванной верификации — интеграция с кванто-

выми повторителями для масштабируемости. 

4.2. Проблема хранения квантового  

состояния и пути ее преодоления 

Хранение квантовых состояний |ψₛₖ⟩ явля-

ется ключевой проблемой для практической 

реализации протокола QDS-Hybrid. Совре-

менные квантовые системы (сверхпроводни-

ковые или на основе ионных ловушек) име-

ют ограниченное время когерентности — от 

микросекунд до нескольких секунд. Декоге-

ренция, вызванная взаимодействием с окру-

жением (шум, температура, электромагнит-

ные поля), делает невозможным долгосроч-

ное хранение квантовых данных. В реальных 

условиях не существует аналогов классиче-

ских жестких дисков или флеш-памяти для 

квантовых состояний. Это ограничивает воз-

можность использования |ψₛₖ⟩ в подписях: 

подпись должна быть проверена до потери 

когерентности, что требует оперативной ве-

рификации. 

Для решения этой проблемы предложено 

несколько подходов. 

1. Квантовая коррекция ошибок (QEC) [24]. 

Состояние |ψₛₖ⟩ кодируется в логический ку-

бит с использованием поверхностного кода 

или кода Шора. Периодическая коррекция 

позволяет компенсировать декогеренцию 

и значительно продлить время жизни состоя-

ния. Однако такой метод требует огромного 

количества физических кубитов (тысячи на 

один логический), что делает его малопри-

годным для NISQ-устройств. 

2. Гибридное «замораживание» состояния 

[24]. Квантовая томография используется для 

получения классического описания |ψₛₖ⟩, ко-

торое можно хранить. При необходимости 

состояние восстанавливается с помощью 

квантового процессора. К основным сложно-

стям, которые возникают, можно отнести 

требование экспоненциального числа изме-

рений для точной реконструкции. Кроме  

того, восстановленное состояние может со-

держать ошибки из-за шума и неточности 

оборудования. 

3. Использование доверенной квантовой 

сети [25]. Состояние |ψₛₖ⟩ не хранится арбит-

ром, а передается ему по квантовому каналу 

в момент верификации через квантовую рас-

пределенную сеть. Значение хранится либо 

у отправителя, либо в доверенном узле. Под-

писание происходит после доставки состоя-

ния через QKD-канал. В таком подходе воз-

никают ограничения, связанные с существо-

ванием развитой инфраструктуры квантовой 

связи. Возможны задержки при передаче, 

и по-прежнему остается проблема кратко-

срочного хранения у получателя.  

4. Динамическая генерация |ψₛₖ⟩ «на лету» 

[26]. Вместо хранения |ψₛₖ⟩ арбитр генерирует 

его непосредственно перед проверкой под-

писи, используя классическое описание схе-

мы (например, последовательность кванто-

вых гейтов). Отправитель передает вместе 

с подписью это описание, защищенное одно-

сторонней функцией от sk. Преимуществом 

такого подхода является отсутствие необхо-

димости долгосрочной квантовой памяти 

и совместимость с NISQ-устройствами. Но 

могут возникать задержки из-за времени ге-

нерации, а также требуется защита классиче-

ского описания и компенсация ошибок гей-

тов. Для повышения скорости генерации 

можно использовать специализированные 

квантовые чипы (ASIC). 

5. Протоколы без сохранения состояния 

(Stateless QDS) [27 ; 28]. Подходят для случа-

ев, когда нужно ограниченное число подпи-

сей. Используется дерево Меркла, в котором 

каждая подпись создается на основе нового 

состояния |ψₛₖⁱ⟩, которое удаляется после 

проверки. Таким образом, не требуется хра-

нить ни одно состояние длительное время. 

Этот протокол устойчив к квантовым атакам, 

и нет необходимости в квантовой памяти. 

В подходе имеется ограниченное число воз-

можных подписей, и требуется заранее под-

готовленный набор ключей.  

6. Квантово-устойчивые хеши вместо кван-

товых состояний [3 ; 29]. Значение |ψₛₖ⟩ заме-

няется на классический хеш h = Hash(sk), 

например, построенный на решетках. При 

верификации арбитр генерирует |ψₛₖ⟩ из h по 

заранее заданному правилу, например:  

 

|ψsk⟩ = Uh|0⟩n, Uh = . 

 

При таком подходе хеш можно хранить 

классически без риска декогеренции, при 

этом имеется совместимость с любыми 

постквантовыми хеш-функциями. Имеется 

опасность, связанная с компрометируемо-

стью sk или h, в этом случае злоумышленник 

сможет создавать поддельные подписи. Для 

защиты используются FHE или SGX, а также 

связка с QKD. 

7. Квантовые метки времени (Quantum 

Timestamps) [30]. Подпись привязывается 



Кузнецов С. Б. Гибридный протокол квантово-классических цифровых подписей QDS-Hybrid 

 101 

к временному интервалу, в рамках которого 

она может быть проверена. Например, ис-

пользуется фаза, зависящая от времени eiωt, 

где ω — угловая частота (радианы в секунду), 

t — время. Проверка возможна только в кон-

кретный момент времени, что исключает 

необходимость хранения состояния. Но по-

является проблема, связанная с высокой точ-

ностью синхронизации времени (NTP недо-

статочен). Одним из путей ее решения будет 

использование квантовых часов или реляти-

вистских протоколов на основе запутанных 

частиц. 

8. Квантовые «одноразовые» ключи 

(QOTP + QKD) [31 ; 32]. Вместо долгосроч-

ного хранения ключей используется однора-

зовый подход: перед подписью отправитель 

и арбитр обмениваются секретным ключом K 

через BB84. Состояние формируется как 
 

∣ψsk⟩ = sk ⋅ 
Ki∣+⟩, 

 

где  X — оператор Паули-X (аналог «NOT» в классиче-

ской логике: X∣0⟩ = ∣1⟩, X∣1⟩ = ∣0⟩); 
sk ∙ Ki — битовое умножение (например, AND) между 

секретным ключом и Ki, где Ki — i-й бит случайного 

ключа/вектора K. 

 

0, то применяется 0 (ничего не меняется),

1, то применяется 1 (кубит переворачивается).

Х I
sk Ki

Х Х


  

  
 

Такой подход не требует долгосрочной па-

мяти, и имеется почти безусловная безопас-

ность в случае надежности QKD. Но возни-

кает постоянный обмен ключами, что увели-

чивает задержки, и необходима защита 

(например, лазерное ослепление) от аппарат-

ных атак. 

Суммируя описанное, можно сделать вы-

вод о том, что для NISQ-устройств наиболее 

целесообразны гибридные хеши в сочетании 

с динамической генерацией состояния. Такой 

подход обеспечивает баланс между просто-

той реализации и уровнем безопасности. 

Для долгосрочной перспективы предпочти-

тельно использование QKD + одноразовых 

ключей, обеспечивающих максимальную без-

опасность, без необходимости хранения 

квантовых состояний. 

Для сценариев с ограниченным числом 

подписей лучшим выбором являются сцена-

рии Stateless QDS, основанные на деревьях 

Меркла. 

Таким образом, даже при отсутствии тех-

нологий для долгосрочного хранения кван-

товых состояний протокол QDS-Hybrid мо-

жет быть реализован с учетом современных 

ограничений, через использование комбина-

ции указанных методов. 

 

5. Сравнение с аналогами 

Протокол QDS-Hybrid сочетает квантовые 

и классические методы для цифровых подпи-

сей. Для оценки его конкурентоспособности 

проведем сравнение с чисто квантовыми 

QDS, например, протоколами Готтсмана — 

Чуанга, а также QOTP и постквантовыми  

алгоритмами: NIST стандартизированными 

(ML-DSA, SLH-DSA) и кандидатами 

(MAYO, SQISign). 

По критерию «безопасность» Pure QDS об-

ладает безусловной безопасностью, но тре-

бует идеальных квантовых каналов, является 

уязвимым к активным атакам (MITM) без 

доверенного арбитра. 

PQ-подписи NIST имеют стойкость, осно-

ванную на сложности LWE (ML-DSA) или 

хеш-функций (SLH-DSA), но уязвимы к бу-

дущим алгоритмам для квантовых компью-

теров. 

QDS-Hybrid комбинирует стойкость LWE 

и квантовую верификацию. Атака на прото-

кол требует взлома и Dilithium, и QKD. 

По критерию «производительность» Pure 

QDS имеет низкую скорость (1 подпись/мин 

для 120 км) [33], что было получено в лабо-

раторных условиях. Алгоритм ML-DSA оп-

тимизирован для TLS (1 мс на подпись).  

Готовы PQ-подписи NIST к внедрению 

(FIPS 204–205) и имеется поддержка в Chrome, 

Cloudflare. Протокол QDS-Hybrid требует 

интеграции QKD-сетей и частично совме-

стим с NIST-стандартами, так как использует 

Dilithium. 

Новые алгоритмы из конкурса NIST 

(2024—2025), такие как MAYO (многомер-

ные уравнения) и SQISign (изогении), пред-

лагают компактные подписи (321 байт) 

и скорость 1,4 мс (MAYO) и рекордно малые 

подписи (177 байт), но обладают медленной 

генерацией (17 сек) (SQISign). Протокол 

QDS-Hybrid превосходит их по безопасности, 

но уступает в скорости/размере (таблица). 
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Сравнение алгоритмов 

Algorithm Comparison 

 

Протокол/ 

метод 
Тип подписи 

Классическая 

безопасность 

Квантовая 

безопасность 

Использование 

квантовой  

памяти 

Реализуемость 
Основные  

ограничения 

Готтсмана 

— Чуанга 

Чисто  

квантовая 

Нет Да Да  

(долгосрочная) 

Теоретический 

уровень 

Квантовая память 

недоступна;  

сложно масштаби-

ровать 

TQDS 

(Threshold 

QDS) 

Пороговая 

квантовая  

Нет Да Да  

(временная) 

Лабораторный 

уровень 

Сложная квантовая  

арифметика;  

требует координа-

ции участников 

Stateless 

QDS 

Одноразовая 

квантовая  

Нет Да Да  

(краткосроч-

ная) 

Эксперимен-

тальный  

уровень 

Подпись нельзя 

повторно исполь-

зовать; требуется 

высокая стабиль-

ность каналов 

Dilithium 

(NIST) 

Постквантовая 

классическая 

Да Да 

(в QROM) 

Нет Полностью  

реализуем  

сейчас 

Отсутствие кван-

товой верифика-

ции; не защищает  

от физического 

перехвата 

QDS-Hybrid 

(предлагае-

мый) 

Гибридная 

(классико-

квантовая) 

Да  

(Dilithium) 

Да (QKD + 

+ SWAP-тест) 

Нет 

(генерация  

«на лету») 

В лабораторных 

условиях 

Высокие требова-

ния к шумоподав-

лению и точности 

гейтов 

Квантовый 

блокчейн  

с QKD-

узлами 

Распределенная 

квантово-

классическая 

Да Да (условно) Нет  

(локальная 

проверка) 

Перспективный 

формат 

Требует развитой 

квантовой инфра-

структуры и про-

токолов согласова-

ния 

 

Анализ таблицы показывает, что QDS-Hybrid 

сочетает постквантовую защиту Dilithium 

и квантовую верификацию через SWAP-тест, 

что делает его устойчивым как к классиче-

ским, так и квантовым атакам. Для гибрид-

ного протокола не требуется долгосрочной 

квантовой памяти — состояние можно гене-

рировать «по запросу». Шум и декогеренция 

остаются ключевыми проблемами для всех 

квантовых протоколов, включая QDS-Hybrid. 

 

Заключение 

Квантовые цифровые подписи представляют 

собой перспективное направление в крипто-

графии, обеспечивающее безусловную без-

опасность благодаря фундаментальным 

принципам квантовой механики, таким как 

невозможность клонирования квантовых со-

стояний и квантовая запутанность. В отличие 

от классических алгоритмов, таких как RSA 

и ECDSA, QDS устойчивы к атакам кванто-

вых компьютеров, включая алгоритмы Шора  

и Гровера, что делает их критически важными 

в будущем для защиты данных. По-види-

мому, вопрос о полной замене классических 

подписей квантовыми не стоит в ближайшие 

10 лет. Но гибридные решения, подобные 

QDS-Hybrid, являются реальным практиче-

ским путем, который можно увидеть сегодня. 

Однако, несмотря на теоретическую стой-

кость, практическое применение QDS стал-

кивается с серьезными вызовами. К ним от-

носятся технологические ограничения, такие 

как декогеренция кубитов, необходимость 

в квантовой памяти и сложность масштаби-

рования квантовых сетей. Кроме того, суще-

ствующие QDS-протоколы требуют значи-

тельных вычислительных ресурсов и специа-

лизированной инфраструктуры, что затруд-

няет их интеграцию в современные системы. 

Гибридные подходы, сочетающие кванто-

вые и классические методы, например, ком-

бинацию QKD с постквантовыми алгорит-

мами, такими как Dilithium, предлагают ком-

промиссное решение. Они позволяют сни-

зить зависимость от квантовой инфраструк-

туры, повысить скорость работы и обеспе-

чить обратную совместимость с существую-

щими технологиями. 

Для дальнейшего развития QDS необхо-

димо сосредоточиться на преодолении тех-

нологических барьеров, таких как создание 

долговременной квантовой памяти и разра-

ботка квантовых повторителей для увеличе-
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ния дальности передачи. Кроме того, важ-

ным направлением является оптимизация 

протоколов для уменьшения количества тре-

буемых кубитов и упрощения их реализации 

на NISQ-устройствах. 

QDS и гибридные схемы могут стать осно-

вой для безопасных коммуникаций в эпоху 

квантовых вычислений. Однако их широкое 

внедрение потребует не только дальнейшего 

изучения, но и развития соответствующей 

инфраструктуры, стандартов и протоколов. 

Успешная интеграция QDS в реальные си-

стемы позволит обеспечить защиту данных 

на новом уровне, не достижимом для класси-

ческих методов. 

Одной из перспектив развития этого 

направления является улучшение устойчиво-

сти к шуму и декогеренции. Для этого нужно 

комбинировать квантовые (QEC) и классиче-

ские (LDPC, Reed-Solomon) коды для защиты 

|ψₛₖ⟩. Можно использовать и Machine Learning 

для подавления шума. Но, возможно, вместо 

борьбы с декогеренцией стоит сосредото-

читься на «квантово-классических» гибридах, 

где критичные этапы выполняются на клас-

сических серверах, а квантовые компоненты 

используются только для верификации. 

Вторым направлением может быть полная 

децентрализация верификации, замена ар-

битра на распределенную сеть валидаторов, 

использующих квантовые византийские со-

глашения (QBA) или квантовые блокчейны 

с smart-контрактами для голосования. 

К третьему направлению можно отнести 

интеграцию с современной инфраструкту-

рой: встраивание протокола в стек квантовых 

сетевых протоколов (например, поверх QKD), 

либо какие-то гибридные TLS/SSL-решения 

(например, замена классических цифровых 

подписей в TLS на QDS-Hybrid). 

Важным направлением развития также яв-

ляется ускорение и оптимизация: снижение 

времени генерации/верификации подписей 

(например, квантовых ASIC для операций 

Rz(θ) и SWAP-теста). Оптимизация может 

состоять из квантового сжатия данных с по-

мощью использования квантовых автоэнко-

деров и эффективных кодировок, амплитуд-

ного кодирования. 

Последним направлением может быть рас-

ширение функциональности за счет исполь-

зования многоразовых квантовых подписей 

и подписей для квантовых сообщений. 

Разработка этих направлений позволит пе-

рейти от теоретической модели к практиче-

скому внедрению в квантовые и классиче-

ские системы. 
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