TESTING OF FOREIGN AND DOMESTIC MODELS OF BANKRUPTCY PREDICTION AT RUSSIAN ENTERPRISES
https://doi.org/10.32324/2412-8945-2021-3-10-19
Abstract
Recently, the topic of forecasting the financial insolvency of an organization based on public open data has become quite popular in domestic analytical science and practice. In general, all models are built according to the same principle: a sample of organizations from the bankruptcy register reveals certain dependencies between individual coefficients that must satisfy certain statistical tests. In fact, the researcher makes extensive use only of the mathematical (statistical) apparatus, not attaching importance to the logic and economic meaning of the represented ratios. Without at all belittling the role of mathematical tools in research of this kind, we note that any model should have a certain economic core that describes the logic and the nature of the influence of the proposed factors on the final result. The article is devoted to testing the most popular forecasting models at enterprises of the real sector in order to study the possibility of using these models in economic practice.
About the Authors
V. V. KovalevRussian Federation
Vitaly V. Kovalev, Doctor of Economic Sciences, Professor, Professor of Department of Credit Theory and Financial Management
Saint Petersburg
T. Sh. Moldobaev
Russian Federation
Timirlan Sh. Moldobaev, master's student
Saint Petersburg
References
1. Bankrotstva kompanii — statistika Fedresursa za 2019 god, available at: https://fedresurs.ru/news/7b3c8884-b159-4ee7-b5fb-7770d9d941da?attempt=2 (accessed 10.09.2020).
2. Boiko I. P., Kazakov A. V., Kolyshkin A. V. Metody prognozirovaniya nesostoyatel'nosti: problemy i perspektivy, Ros. predprinimatel'stvo, 2017, vol. 18, no. 8, pp. 1313—1326.
3. Generalova N. V., Sokolova N. A. Variativnost' interpretatsii bukhgalterskoi informatsii, Vestn. S.-Peterb. un-ta, Ser. 5, 2012, iss. 1, pp. 175—181.
4. Generalova N. V., Sokolova N. A. Polimorfizm interpretatsii ekonomicheskoi informatsii v integrirovannoi sisteme ucheta, Finansy i biznes, 2013, no. 2, pp. 159—168.
5. Kazakov A. V., Kolyshkin A. V. Razrabotka modelei prognozirovaniya bankrotstva v sovremennykh rossiiskikh usloviyakh, Vestn. S.-Peterb. un-ta. Ekonomika, 2018, vol. 34, iss. 2, pp. 241—266.
6. Obzor: Khitrost' i stagnatsiya rastyanuli bankrotstva, available at: https://fedresurs.ru/news/ccfc7b66-7065-4eef-9bc2-a2426e0e895d?attempt=1 (accessed 12.09.2020).
7. Obzor: Chislo korporativnykh bankrotstv v RF v 2018 godu snizilos' do estestvennogo urovnya, available at: https://fedresurs.ru/news/5e75d843-000b-4ce1-9925-9e02d89fa0e7?attempt=1 (accessed 12.09.2020).
8. Kolyshkin A. V., Gilenko E. V., Dovzhenko S. E., Zhilkin S. A., Choe S. E. Prognozirovanie finansovoi nesostoyatel'nosti predpriyatii, Vestn. S.-Peterb. un-ta, Ser. 5, 2014, iss. 2, pp. 122—142.
9. Sokolova N. A. Problemy opredeleniya somnitel'noi debitorskoi zadolzhennosti na osnovanii analiza platezhesposobnosti, Finansy i biznes, 2011, no. 2, pp. 174—184.
10. Fedorova E. A., Dovzhenko S. E., Fedorov F. Yu. Modeli prognozirovaniya bankrotstva rossiiskikh predpriyatii: otraslevye osobennosti, Problemy prognozirovaniya, 2016, no. 3, pp. 32—40.
11. Fedorova E. A., Khrustova L. E., Chekrizov D. V. Otraslevye osobennosti primeneniya modelei prognozirovaniya bankrotstva predpriyatiya, Strateg. resheniya i risk-menedzhment, 2018, no. 1 (104), pp. 64—71.
12. Altman E. I. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy, The Journal of Finance, 1968, vol. 4, pp. 589—609.
13. Beaver W. H. Financial ratios as predictors of failure, Journal of Ac-counting Research, 1966, no. 4, pp. 71—111.
14. Chudson W. A. A Survey of Corporate Financial Structure, NBER Chapters in „The Pattern of Corporate Financial Structure: A Cross-Section View of Manufacturing, Mining, Trade, and Construction”. National Bureau of Economic Research, 1945, pp. 1—16.
15. Edmister R. O. An Empirical Test of Financial Ratio Analysis for Small Business Failure Prediction, Journal of Financial and Quantitative Analysis, 1972, 7, pp. 1477.
16. Odom M., Sharda R. A. Neur al Network Model for Bankruptcy Prediction, Proceedings of the International Joint Conference on Neural Net-works. San Diego, 1990, 17—21 June, vol. II, pp. 163—171.
17. Ohlson J. Financial ratios and the probabilistic prediction of bankruptcy, Journal of Accounting Research, 1980, vol. 18, iss. 1, pp. 109—131.
18. Salchengerger L. M., Cinar E. M., Lash N. A. Neural networks: A New Tool for Predicting Thrift Failures, Decision Sciences, 1992, no. 23 (4), pp. 899—916.
19. Springate G. L. Predicting the possibility of failure in a Canadian firm, Unpublished MBA project, Simon Fraser University, 1978.
20. Taffler R. J., Tisshaw H. Going, Going, Gone — Four Factors which Predict, Accountancy, 1977, vol. 3, pp. 50—54.
Review
For citations:
Kovalev V.V., Moldobaev T.Sh. TESTING OF FOREIGN AND DOMESTIC MODELS OF BANKRUPTCY PREDICTION AT RUSSIAN ENTERPRISES. Territory Development. 2021;(3 (25)):10-19. (In Russ.) https://doi.org/10.32324/2412-8945-2021-3-10-19