Preview

Territory Development

Advanced search

Integro-differential evaluation model gross regional product

https://doi.org/10.32324/2412-8945-2022-2-15-21

Abstract

The issues of numerical modeling of the gross product, based on the knowledge of the resources and capabilities of the region, is still an urgent problem. The main task of the work was to create a model of the gross regional product based on the finite-time scheme of the integro-differential equation. The resulting equation will determine the growth of the gross regional product based on changes in production factors: fixed assets, natural and labor resources. The main result in the presented work is obtaining a finite-time model of the equation and its verification. When obtaining the forecast value of the gross regional product, the values of the gross regional product and the main factors of production of the previous two years are used. The considered finite-difference analogue of the equation can become another tool for forecasting the gross regional product in the short term.

About the Authors

S. B. Kuznetsov
Siberian Institute of Management — branch of the Russian Presidential Academy of National Economy and Public Administration
Russian Federation

Sergey B. Kuznetsov — Candidate of Physical and Mathematical Sciences, Associate Professor

8-913-915-1413 

Novosibirsk



E. V. Kuligin
Siberian Institute of Management — branch of the Russian Presidential Academy of National Economy and Public Administration
Russian Federation

Evgeny V. Kuligin — Candidate of Physical and Mathematical Sciences, Associate Professor 

Novosibirsk



References

1. Alaev Je.B. Regional'noe planirovanie v razvivajushhihsja stranah [Regional Planning in Developing Countries], AN SSSR, Sovet po izucheniju proizvodit. sil pri Gosplane SSSR. Moscow: Nauka, 1973, 216 p.

2. Baranov A.O., Pavlov V.N., Slepenkova Ju.M. Razrabotka dinamicheskoj mezhotraslevoj modeli s blokom chelovecheskogo kapitala [Development of a dynamic inter-branch model with human capital block], Mir jekonomiki i upravlenija [The World of Economics and Management], 2017, vol. 17, no. 1, pp. 14—25.

3. Granberg G.A. Dinamicheskie modeli narodnogo hozjajstva [Dynamic models of the national economy]. Moscow: Jekonomika, 1985, 240 p.

4. Egorov E.G. Jeffektivnost' osnovnyh proizvodstvennyh fondov gornoj promyshlennosti Severo-Vostoka SSSR [Efficiency of Fixed Production Assets in the Mining Industry of the Northeast of the USSR]. Moscow: Nauka, 1968, 134 p.

5. Leont'ev V.V. Jekonomicheskie jesse. Teorii, issledovanija, fakty i politika [Economic Essays. Theories, Studies, Facts and Politics]. Moscow: Publ. politicheskoj literatury, 1990, 416 p.

6. Minakir P.A. Jekonomicheskoe razvitie regiona: programmnyj podhod [Economic development of the region: a program approach]. Moscow: Nauka, 1983, 224 p.

7. Morozova T.G. et al. Gosudarstvennaja jekonomicheskaja politika [State economic policy]. Moscow: JuNITI-DANA, 2006, 256 p.

8. Nekrasov N.N. Problemy sibirskogo kompleksa [Problems of the Siberian Complex]. Novosibirsk: Zap.-Sib. kn. izdvo, 1973, 224 p.

9. Nemchinov V.S. Jekonomiko-matematicheskie metody i modeli [Economic and mathematical methods and models]. Moscow: Mysl', 1965, 478 p.

10. Suslov V.I., Ibragimov N.M., Talysheva L.P., Cyplakov A.A. Jekonometrija [Econometrics], G.M. Mkrtchjana ed. Novosibirsk: Publ. SO RAN, 2005, 744 p.

11. Gataulin A.M., Gavrilov G.V., Sorokina T.M. et al. Matematicheskoe modelirovanie jekonomicheskih processov v sel'skom hozjajstve [Mathematical modeling of economic processes in agriculture], A.M. Gataulina ed. Moscow: Agropromizdat, 1990, 431 p.

12. Suspicyn S.A. Metody i modeli koordinacii dolgosrochnyh reshenij v sisteme “nacional'naja jekonomika — region” [Methods and models for the coordination of long-term solutions in the system “national economy — regions”], V.V. Kuleshova ed., IJeOPP SO RAN. Novosibirsk: Publ. IJeOPP SO RAN, 2017, 295 p.

13. Kuznecov S.B. Dinamika obnovlenija faktorov proizvodstva [Dynamics of renewal of production factors]. Novosibirsk: Sibprint, 2010, 312 p.

14. Kuznecov S.B., Kuligin E.V. Integro-differencial'noe modelirovanie valovogo produkta [Integro-differential modeling of gross product], Biznes. Obrazovanie. Pravo [Business. Education. Law], 2021, no. 2 (55), pp. 150—157. DOI: 10.25683/VOLBI.2021.55.228.

15. Kochin N.E. Vektornoe ischislenie i nachala tenzornogo ischislenija [Vector calculus and the beginnings of tensor calculus]. Moscow: Nauka, 1965, 423 p.

16. Kremer N.Sh., Putko B.A. Jekonometrika [Econometrics]. Moscow: JuNITI-DANA, 2012, 328 p.

17. Samarskij A.A. Teorija raznostnyh shem [The theory of difference schemes]. Moscow: Nauka, 1977, 656 p.


Review

For citations:


Kuznetsov S.B., Kuligin E.V. Integro-differential evaluation model gross regional product. Territory Development. 2022;(2 (28)):15-21. (In Russ.) https://doi.org/10.32324/2412-8945-2022-2-15-21

Views: 260


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2412-8945 (Print)