On invariance and sensitivity of parameters of mathematical models of economic systems
https://doi.org/10.32324/2412-8945-2023-2-08-14
Abstract
The problems of modeling processes and systems of the economy are considered, the optimal control problem is posed, the system of nonlinear differential equations representing the economy and the optimized target functional are determined; a variational method for solving the problem is chosen, the principle of invariance of nonlinear systems and the possibilities provided by them for modeling dynamic, including economic, systems are described. A critical analysis of the state in the field of economic modeling is given. The features and properties of the invariance principle of linear systems are considered in terms of the Laplace transform. Sensitivity functions of nonlinear systems and Gato and Frechet derivatives defining them are obtained. The application of sensitivity theory in problems of optimal control of nonlinear systems is shown by the example of a fairly simple problem.
About the Authors
V. A. ErmolaevRussian Federation
Valery A. Ermolaev — Candidate of Technical Sciences, Associate Professor at the Department of Electronics and Computer Engineering
Murom
A. Yu. Proskuryakov
Russian Federation
Alexander Y. Proskuryakov — Candidate of Technical Sciences, Associate Professor at the Department of Electronics and Computer Engineering
Murom
References
1. Vladimirov V.S. Chto takoe matematicheskaya fizika? Preprint [What is mathematical physics?]. Moscow, MIAN, 2006, 20 p.
2. Moiseev N.N. Matematika stavit eksperiment [Mathematics puts the experiment]. Moscow, Nauka, 1979.
3. Moiseev N.N. Izbrannye trudy [Selected Works], v 2 t. Moscow, Taideks KO, 2003.
4. Asemoglu D. Vvedenie v teoriyu sovremennogo ekonomicheskogo rosta [Introduction to the theory of modern economic growth], v 2 kn. Moscow, Delo, RANKhiGS, 2018.
5. Tsay R.S. Analysis of financial time series. Hoboken. New Jersey, John Wiley & Sons, 2010.
6. Ivanov V.V., Malinetskii G.G. Tsifrovaya ekonomika: mify, real'nost', perspektivy [Digital economy: myths, reality, prospects]. Moscow, RAN, 2017.
7. Larina O.I., Akimov O.M. Tsifrovye den'gi na sovremennom etape: klyuchevye riski i napravleniya razvitiya [Digital money at the present stage: key risks and directions of development], Finansy: teoriya i praktika [Finance: theory and practice], 2020, vol. 24, no. 4, pp. 18—30.
8. Polunin Yu.A. Sintez metodov nelineinoi dinamiki i regressionnogo analiza dlya issledovaniya sotsial'no-ekonomicheskikh protsessov [Synthesis of nonlinear dynamics and regression analysis methods for the study of socio-economic processes], Problemy upravleniya [Problems of management], 2019, no. 1, pp. 32—44.
9. Andrianov D.L., Arbuzov V.O., Ivliev S.V. et all. Dinamicheskie modeli ekonomiki: teoriya, prilozheniya, programmnaya realizatsiya [Dynamic models of the economy: theory, applications, software implementation], Vestnik Permskogo universiteta. Ekonomika [Vestnik (Herald) of Perm University. Economics], 2015, no. 4 (27), pp. 8—32.
10. Matrosov V.V., Shalfeev V.D. Modelirovanie ekonomicheskikh i finansovykh tsiklov: generatsiya i sinkhronizatsiya [Modeling economic and financial cycles: generation and synchronization], Izvestiya vuzov. PND [Izvestia of Higher Education Institutions], 2021, vol. 29, no. 4, pp. 127—138.
11. Tsirlin A.M. Metody usrednennoi optimizatsii i ikh prilozheniya [Methods of averaged optimization and their applications]. Moscow, Nauka, 1997.
12. Tsirlin A.M. Zadachi i metody usrednennoi optimizatsii [Problems and methods of averaged optimization], Trudy MIAN [Proceedings of the Steklov Institute of Mathematics(MIAN)], 2008, vol. 261, pp. 276—292.
13. Solodovnikova V.V. (ed.) Tekhnicheskaya kibernetika. Teoriya avtomaticheskogo regulirovaniya. Kniga 2. Analiz i sintez lineinykh nepreryvnykh i diskretnykh sistem avtomaticheskogo regulirovaniya [Technical cybernetics. Theory of automatic regulation. Book 2. Analysis and synthesis of linear continuous and discrete automatic control systems]. Moscow, Mashinostroenie, 1967.
14. Petrova B.N., Solodovnikova V.V., Topcheeva Yu.I. (eds.) Sovremennye metody proektirovaniya sistem avtomaticheskogo upravleniya. Analiz i sintez [Modern methods of designing automatic control systems. Analysis and synthesis]. Moscow, Mashinostroenie, 1967.
15. Petrov B.N. Izbrannye Trudy [Selected Works], vol. 1. Teoriya avtomaticheskogo upravleniya [Selected Works. Т. 1. Theory of automatic control]. Moscow, Nauka, 1983.
16. Rozonoer L.I. Variatsionnyi podkhod k probleme in-variantnosti sistem avtomaticheskogo upravleniya [The variational approach to the problem of invariance of automatic control systems]. I, AiT [Automatics and Telemechanics], 1963, no. 6, pp. 744—756.
17. Rozonoer L.I. Variatsionnyi podkhod k probleme invariantnosti sistem avtomaticheskogo upravleniya [The variational approach to the problem of invariance of automatic control systems]. II, AiT [Automatics and Telemechanics], 1963, no. 7, pp. 861—670.
18. Velichenko V.V. O variatsionnom metode v probleme invariantnosti upravlyaemykh system [On the variational method in the problem of invariance of controllable systems], AiT [Automatics and Telemechanics], 1972, no. 4, pp. 22—35.
19. Rozenvasser E.N., Yusupov R.M. Chuvstvitel'nost' sistem upravleniya [Sensitivity of control systems]. Moscow, Nauka, 1981.
20. Tomovich R., Vukobratovich M. Obshchaya teoriya chuvstvitel'nosti [General theory of sensitivity]. Moscow, Sovetskoe radio, 1972.
21. Tsypkina Ya.Z. (ed.) Chuvstvitel'nost' avtomaticheskikh sistem: trudy Mezhdunarodnogo simpoziuma po chuvstvitel'nym sistemam avtomaticheskogo upravleniya (Dubrovnik, sentyabr' 1964.) [Sensitivity of automatic systems: proceedings of the International symposium on sensitive automatic control systems]. Moscow, Nauka, 1968.
22. Moiseev N.N. Chislennye metody v teorii optimal'nykh system [Numerical methods in the theory of optimal systems]. Moscow, LENAND, 2020.
23. Alekseev V.M., Tikhomirov V.M., Fomin S.V. Optimal'noe upravlenie [Optimal control]. Moscow, Fizmatlit, 2007.
24. Ortega Dzh., Reinboldt V. Iteratsionnye metody resheniya nelineinykh sistem uravnenii so mnogimi neizvestnymi [Iterative methods for solving nonlinear systems of equations with many unknowns]. Moscow, Mir, 1975.
25. Oben Zh.-P., Ekland I. Prikladnoi nelineinyi analiz [Applied non-linear analysis]. Moscow, Mir, 1988.
26. Special issue on sensitivity, Journal of the Franklin Institute, 1981, vol. 312, no. 3—4, pp. 141—216.
27. Tsirlin A.M., Salamon P., Khoffman K.Kh. Zamena peremennykh sostoyaniya v zadachakh parametricheskogo upravleniya ostsillyatorami [Substitution of state variables in parametric oscillator control problems], AiT [Automatics and Telemechanics], 2011, no. 8, pp. 53—64.
28. Andresen B., Salamon P., Khoffman K.Kh., Tsirlin A.M. Optimal'nye protsessy dlya upravlyaemykh ostsillyatorov [Optimal processes for controlled oscillators], AiT [Automatics and Telemechanics], 2018, no. 12, pp. 3—15.
Review
For citations:
Ermolaev V.A., Proskuryakov A.Yu. On invariance and sensitivity of parameters of mathematical models of economic systems. Territory Development. 2023;(2 (32)):8-14. (In Russ.) https://doi.org/10.32324/2412-8945-2023-2-08-14